Choisir la langue :

Units' description

Master Chimie physique et analytique

  • Durée des études : 2 ans
  • Crédits : 120
  • 2 Parcours :

Objectifs

 Pré-requis: Master1 PAC, options du parcours ASC.

L'objectif de cet enseignement, dispensé exclusivement en anglais, est de répondre à un besoin de cadres internationaux qualifiés en méthodes modernes d'analyses spectroscopiques.
Les 3ème et 4ème semestres offrent une formation plus spécialisée et appliquée à la synthèse moléculaire, la biologie, les nanotechnologies, la modélisation, la chimie verte, la médecine et les énergies renouvelables.

Les étudiants souhaitant intégrer le master Européen ASC et obtenir un double diplômes devront avoit été sélectionnés conjointement par les universités du réseau ASC à l'entrée en Master 1. Se reporter au site du master pour toutes précisions: www.master-asc.org

Dans ce cadre uniquement, une mobilité obligatoire d'un an dans le consortium permet aux étudiants d'acquérir un haut degré de spécialisation, leur donne accès aux technologies de pointes, et leur assure une formation harmonisée dans plusieurs établissements d'enseignement supérieur européens. Les étudiants sont encouragés à réaliser leur stage et mémoire de master (semestre 4) sur la base d'une collaboration entre 2 universités partenaires.

Objectifs

Le parcours Atmospheric Environment, de la 2ème année du Master Physical and Analytical Chemistry est une formation ouverte à l'international. Les enseignements sont dispensés en anglais.

Les objectifs de ce parcours sont de former des étudiants experts dans le domaine des sciences de l'atmosphère grâce à un enseignement de pointe couvrant les disciplines de la physique et de la chimie de l’atmosphère.

L'organisation de la formation est la suivante :

  • 1er semestre (S3) : enseignements de spécialité, enseignements transversaux, travaux pratiques et projets.
  • 2ème semestre (S4) : stage de 5 mois en laboratoire de recherche   

La formation proposée permet de comprendre, décrire et modéliser différents processus physico-chimiques intervenant aussi bien à l’échelle moléculaire qu’à l’échelle macroscopique tel qu’au sein de la colonne atmosphérique. A l’issue de cette formation, l’étudiant aura acquis les connaissances fondamentales et les techniques de pointe du domaine des sciences de l'atmosphère lui permettant de comprendre les enjeux liés aux problématiques majeures dans ce domaine : la qualité de l’air et l’évolution du climat.

Spécificités

Ce master européen a été développé conjointement par cinq universités: Lille1 (coordinateur du consortium), Université de Helsinki (Finlande), Université Jagiellonian, Cracovie, Pologne, Université de Leipzig (Allemagne), Université Alma Mater de Bologne (Italie). Il a été intégré au programme Erasmus Mundus soutenu par la Commission Européenne de 2008 à 2014 (promotion 2012-2014 incluse).

Les atouts du Master ASC:

  • Une garantie de qualité (tous les partenaires ont été officiellement reconnus par le programme Erasmus Mundus et l'attribution du label Euromaster par l'ECTNA (European Chemistry Thematic Network Association).
  • Une solide formation pratique et théorique spécialisée en spectroscopie
  • Une opportunité de mobilité au sein d'un large réseau européen de laboratoires de recherche avec un suivi et un encadrement privilégiés
  • Une bonne préparation pour devenir des experts en techniques expérimentales de pointe en spectroscopie aussi bien pour intégrer l'entreprise que pour la poursuite d'études en doctorat.

Pour les étudiants ayant choisi le parcours européen :

  • l'obtention d'un double diplôme - ou diplôme multiple (délivré par chacune des universités où l'étudiant a étudié pendant les 2 années du programme)
  • Un accès à des techniques qui ne sont pas disponibles localement (mutualisation des équipements du réseau)
  • L'originalité de ce programme est de permettre aux étudiants de choisir leur sujet de mémoire dans un domaine très spécialisé, en fonction de leur objectif professionnel. Le niveau élevé des équipements disponibles dans le réseau est unique.

Spécificités

Le parcours Atmospheric Environment est en forte cohérence avec les activités de recherche du LabEx CaPPA (Chemical and Physical Properties of the Atmosphere).


Les savoirs

  • l'analyse chimique
  • la caractérisation structurale
  • l'imagerie et la modélisation moléculaire
  • la caractérisation des réactions rapides
  • la surveillance et la maintenance de la qualité
  • les matériaux

Les savoirs

La formation proposée permet de comprendre, décrire et modéliser différents processus physico-chimiques intervenant aussi bien à l’échelle moléculaire qu’à l’échelle macroscopique tel qu’au sein de la colonne atmosphérique.

A l’issue de cette formation, l’étudiant a acquis les connaissances fondamentales et les techniques de pointe du domaine des sciences de l'atmosphère lui permettant de comprendre les enjeux liés aux problématiques majeures dans ce domaine :  la qualité de l’air et l’évolution du climat.

Les savoir-faire

  • Mener des projets de recherche de manière méthodique et autonome / Leading research projects in an autonomous and methodical manner
  • Prendre des décisions dans la gestion des procédés / Decisions making in process management
  • Compétences en langues. Exprimer un projet scientifique en anglais à l'oral et à l'écrit. / Linguistic competencies. Presenting a research project in English both orally and in writing.
  • Mener des projets dans un contexte international et multiculturel / Lead projects in an international and multicutural context.
  • Mobilité géographique / geographical mobility

Les savoir-faire

  • acquisition d’un socle solide de fondamentaux appliquées à l'atmosphère (chimie de l'atmosphère, réactivité, spectroscopie)
  • connaître les méthodes et les techniques de pointe en analyses chimiques et diagnostics optiques
  • savoir mettre en œuvre ces techniques pour détecter et identifier les composés chimiques cibles de l’atmosphère (COV, HAP, particules …).
  • savoir maîtriser les méthodes de sondage par télédétection (photométrie, LIDAR, spectrométrie, ...).
  • savoir interpréter les données chimiques et physiques issues des réseaux de mesure en vue de modéliser les processus atmosphériques de l’échelle locale et l’échelle globale.

Tableau des semestres

SemestreUnité d'enseignementCrédits :
Semestre 1
Liste des UEs obligatoires

The aims of this unit are:

  • To show the broad impact of magnetic resonance in chemistry, physics, engineering, biology and medicine;
  • To deepen the student’s knowledge of NMR and ESR from a theoretical and instrumental point of view;
  • To develop the skills and confidence of the students applying various complementary Magnetic Resonance experiments towards structural elucidation;
  • To highlight modern advances in instrumentation and techniques within NMR and ESR.
5

Aims and Objectives:

  • Calculation of rotational energy levels of linear and non-linear molecules and prediction of pure rotational and ro-vibrational spectra.
  • Interpretation of spectra and determination of geometric structures
  • Group theory and vibrational spectroscopy of polyatomic molecules.
  • Electronic absorption spectroscopy: Franck-Condon principle, symmetry of molecular orbitals and of electronic states, selection rules, coupling between vibrational and electronic states
  • Learning of experimental techniques (infrared and Raman spectrometers)
  • Use of computer software dedicated to the calculation of spectroscopic constants and the prediction of spectra.
5

The aim of the course is to recall the basic concepts of quantum mechanics and to apply them in the field of electronic structure of atoms and molecules.

5
  • Academic English: how to differentiate between spoken English and formal English, and use the appropriate terms and expressions in a formal essay/letter/thesis
  • Presentation English: how to give good, clear and concise PP Presentation. How to prepare it, express yourself clearly, address your audience, react to questions, etc.
  • CVs and covering letters: how to write a modern, clear, attractive CV well adapted to your goals. How to write a covering letter that will stand out and emphasise your qualities in good, accurate English
  • Lab English: how to describe lab experiments (including materials, equipment, set up, conclusions) with audio exercises providing examples in international context
  • Part of the course is also specifically aimed at students who need to improve their proficiency, with vocabulary and grammar exercises, audio and video documents, and interaction.
5
Liste des UEs optionnelles

This course focuses on crystallography and diffraction techniques. It is divided into two parts:

Part 1: theoretical aspects of the X-ray diffraction

Part 2: technical aspects and processing of powder diffractograms

The aims of this unit are:

•             To give a solid background on basic crystallography.

•             To give a solid background in diffraction techniques.

•             To highlight modern advances in XRD instrumentation and techniques.

5
Data process. & data analysis in physical chemistry5

  

5
Semestre 2
Liste des UEs obligatoires

The aims of this unit are:

  • To develop the skills and confidence of the students in organic chemistry through a deep understanding of the underlying physical chemistry phenomena;
  • To identify appropriate methodologies (spectroscopic or other) for the elucidation of reaction mechanisms and reaction intermediate or product structures (including stereochemical aspects).
5

The aim of this course is to propose a large overview of preparation methods of inorganic phases, as well as their characterizations through a various set of methods among those mostly used in academic and industrial laboratories.

Various types of inorganic solids will be covered, including crystalline and vitreous ones, with a focus on porous compounds, which are currently the subject of many developments.

Phase diagrams are one of the mostly used tools for the elaboration of materials; their use will be described with some comprehensive application examples.

Characterization methods will be shortly described since the course will focus on their practical use and will be illustrated with examples.

5

In every field of chemistry, data extraction from lab experiments is needed. With computer controlled experimental procedures, chemistry is nowadays an experimental discipline producing an always growing amount of data, up to a point where it is now impossible to analyze spectroscopic data without the appropriate data processing method capable of extracting the wanted information. The proposed course will detail the potential and the limits of different data processing methods in spectroscopy, as an introduction to chemometrics, this new discipline in chemistry. As such, this course will propose to answer to different aspects such as: qualitative, quantitative analyses, imaging problems, and time resolved spectroscopies data exploration. In conclusion, the aim is to obtain a better understanding of the data processing step for spectroscopic data analysis.

5

To build upon and extend the theoretical and experimental approaches introduced during the bachelor degree programme.

To develop the competence and confidence of the students in reaction kinetics and catalysis.

To identify appropriate experimental procedures for particular application.

To highlight modern advances in instrumentation and quantitative analytical techniques and their applications.

5
Liste des UEs optionnelles
Experimental Methods in Environmental Science5

The objectives of the unit are to enhance the knowledge in the use and utility of spectroscopic methods in the field of biomolecular analysis.

The course will be divided into three topics dedicated to biomolecular analysis using NMR, SPR and MS. The course will be devoted to the analysis of different classes of biomolecules suitable for these technologies, the strategies to be employed and the type of information (degree of characterization) that they can bring.

The teaching program will cover fundamental and instrumental aspects will focus on different applications and strategies for biomolecular analysis as well as data interpretation. The theoretical learning will be completed by a practical part.

The aims of this teaching unit are:

-Enlarge the basic knowledge on spectroscopy methods as applied to biomolecular analysis.

-Understand the difference in the divers characterization strategies that can be used and developed for the different classes of biomolecules and identify their specificity.

-Acquire knowledge on data interpretation for biomolecules

-Learn integrative strategies to answer biological problems using NMR, SPR and MS.

5

Predict, interpret and use absorption or fluorescence emission spectra of molecules in gaseous and liquid phase in UV-visible region implying electronic transitions

5
Synchrotron Radiation and its applications5
Winter school3
Semestre 3
Liste des UEs obligatoires

This course is organized in 3 parts, aiming at understanding the fundamentals as well as the applications of several techniques for the characterization of amorphous and nanostructured solids (TEM and associated spectroscopies, SSNMR, XAS).

It aims at imparting the students the basic knowledge about the solid-state Nuclear Magnetic Resonance (NMR) methods, the concepts of electron microscopy and its related analysis techniques (EDX, EELS) as well as the basic -theoretical and experimental- tools used in X- ray absorption spectroscopy. The final objective of this course is to make the students able to use these techniques in order to characterize amorphous and nano-structured solids (nanomaterials, glasses, catalysts…).

10
Internship and Transferable Skills10
Organic Photochemistry5
Molecular Modelling5
Semestre 4
Liste des UEs obligatoires
Master Thesis30
Liste des UEs obligatoires
Winter school3
SemestreUnité d'enseignementCrédits :
Semestre 1
Liste des UEs obligatoires

The aims of this unit are:

  • To show the broad impact of magnetic resonance in chemistry, physics, engineering, biology and medicine;
  • To deepen the student’s knowledge of NMR and ESR from a theoretical and instrumental point of view;
  • To develop the skills and confidence of the students applying various complementary Magnetic Resonance experiments towards structural elucidation;
  • To highlight modern advances in instrumentation and techniques within NMR and ESR.
5

Aims and Objectives:

  • Calculation of rotational energy levels of linear and non-linear molecules and prediction of pure rotational and ro-vibrational spectra.
  • Interpretation of spectra and determination of geometric structures
  • Group theory and vibrational spectroscopy of polyatomic molecules.
  • Electronic absorption spectroscopy: Franck-Condon principle, symmetry of molecular orbitals and of electronic states, selection rules, coupling between vibrational and electronic states
  • Learning of experimental techniques (infrared and Raman spectrometers)
  • Use of computer software dedicated to the calculation of spectroscopic constants and the prediction of spectra.
5

The aim of the course is to recall the basic concepts of quantum mechanics and to apply them in the field of electronic structure of atoms and molecules.

5
  • Academic English: how to differentiate between spoken English and formal English, and use the appropriate terms and expressions in a formal essay/letter/thesis
  • Presentation English: how to give good, clear and concise PP Presentation. How to prepare it, express yourself clearly, address your audience, react to questions, etc.
  • CVs and covering letters: how to write a modern, clear, attractive CV well adapted to your goals. How to write a covering letter that will stand out and emphasise your qualities in good, accurate English
  • Lab English: how to describe lab experiments (including materials, equipment, set up, conclusions) with audio exercises providing examples in international context
  • Part of the course is also specifically aimed at students who need to improve their proficiency, with vocabulary and grammar exercises, audio and video documents, and interaction.
5
Liste des UEs optionnelles

This course focuses on crystallography and diffraction techniques. It is divided into two parts:

Part 1: theoretical aspects of the X-ray diffraction

Part 2: technical aspects and processing of powder diffractograms

The aims of this unit are:

•             To give a solid background on basic crystallography.

•             To give a solid background in diffraction techniques.

•             To highlight modern advances in XRD instrumentation and techniques.

5
Data process. & data analysis in physical chemistry5

  

5
Semestre 2
Liste des UEs obligatoires

The aims of this unit are:

  • To develop the skills and confidence of the students in organic chemistry through a deep understanding of the underlying physical chemistry phenomena;
  • To identify appropriate methodologies (spectroscopic or other) for the elucidation of reaction mechanisms and reaction intermediate or product structures (including stereochemical aspects).
5

The aim of this course is to propose a large overview of preparation methods of inorganic phases, as well as their characterizations through a various set of methods among those mostly used in academic and industrial laboratories.

Various types of inorganic solids will be covered, including crystalline and vitreous ones, with a focus on porous compounds, which are currently the subject of many developments.

Phase diagrams are one of the mostly used tools for the elaboration of materials; their use will be described with some comprehensive application examples.

Characterization methods will be shortly described since the course will focus on their practical use and will be illustrated with examples.

5

In every field of chemistry, data extraction from lab experiments is needed. With computer controlled experimental procedures, chemistry is nowadays an experimental discipline producing an always growing amount of data, up to a point where it is now impossible to analyze spectroscopic data without the appropriate data processing method capable of extracting the wanted information. The proposed course will detail the potential and the limits of different data processing methods in spectroscopy, as an introduction to chemometrics, this new discipline in chemistry. As such, this course will propose to answer to different aspects such as: qualitative, quantitative analyses, imaging problems, and time resolved spectroscopies data exploration. In conclusion, the aim is to obtain a better understanding of the data processing step for spectroscopic data analysis.

5

To build upon and extend the theoretical and experimental approaches introduced during the bachelor degree programme.

To develop the competence and confidence of the students in reaction kinetics and catalysis.

To identify appropriate experimental procedures for particular application.

To highlight modern advances in instrumentation and quantitative analytical techniques and their applications.

5
Liste des UEs optionnelles
Experimental Methods in Environmental Science5

The objectives of the unit are to enhance the knowledge in the use and utility of spectroscopic methods in the field of biomolecular analysis.

The course will be divided into three topics dedicated to biomolecular analysis using NMR, SPR and MS. The course will be devoted to the analysis of different classes of biomolecules suitable for these technologies, the strategies to be employed and the type of information (degree of characterization) that they can bring.

The teaching program will cover fundamental and instrumental aspects will focus on different applications and strategies for biomolecular analysis as well as data interpretation. The theoretical learning will be completed by a practical part.

The aims of this teaching unit are:

-Enlarge the basic knowledge on spectroscopy methods as applied to biomolecular analysis.

-Understand the difference in the divers characterization strategies that can be used and developed for the different classes of biomolecules and identify their specificity.

-Acquire knowledge on data interpretation for biomolecules

-Learn integrative strategies to answer biological problems using NMR, SPR and MS.

5

Predict, interpret and use absorption or fluorescence emission spectra of molecules in gaseous and liquid phase in UV-visible region implying electronic transitions

5
Synchrotron Radiation and its applications5
Winter school3
Semestre 3
Liste des UEs obligatoires
  • Ability to derive significant quantitative parameters from spectroscopic analysis;
  • Ability to assess and address a complex environmental sample analysis based on spectroscopic solutions;
  • Critical evaluation of a given technique advantages and drawbacks - ability to propose new developments/variants;
  • Design, document, and conduct an optimized experimental procedure, including spectroscopic data acquisition.
5
AE5- Observing Systems for Atmospheric Composition5
Languages5

A l'issue de l'enseignement, l'étudiant devra être capable de proposer et d'utiliser des techniques avancées (spectroscopiques ou spécifiques) pour détecter, caractériser et mesurer des espèces chimiques en phase gazeuse ou solide à l'état de traces et qui peuvent être impliquées dans des problématiques environnementales.

5

A l’issue de l’enseignement, l’étudiant est capable de :

  • d’expliquer la structure de l’atmosphère et les mouvements qui s’y produisent
  • décrire les processus chimiques et photochimiques impliquant les principaux polluants gazeux (ozone, NOx, COV)
  • décrire les interactions entre l'atmosphère et le rayonnement en vue d'établir un bilan radiatif terrestre
  • calculer un de transfert de masse de la phase gazeuse vers la phase condensée
  • calculer un bilan radiatif
  • prédire le devenir atmosphérique des espèces émises en fonction de la nature de leur source
  • maîtriser la métrologie de l'aérosol par mesure de comptage et de granulométrie
5
  • Acquérir les connaissances fondamentales et les savoir-faire associés à la cinétique chimique, la chimie de la combustion et la catalyse hétérogène;
  • Appliquer ces connaissances à des problèmes relevant de problématiques environnementales.
5
Semestre 4
Liste des UEs obligatoires

Le stage de M2 s'effectue dans un centre de recherche académique ou privé et constitue une initiation à la recherche en lien avec les sciences de l'atmosphère et mettant en oeuvre les connaissances théoriques et expérimentales acquises par l'étudiant au cours des semestres précédents.

30
  • Semestre 1
    • Liste des UEs obligatoires
      • Nuclear Magnetic Resonnance (5 ECTS)

        The aims of this unit are:

        • To show the broad impact of magnetic resonance in chemistry, physics, engineering, biology and medicine;
        • To deepen the student’s knowledge of NMR and ESR from a theoretical and instrumental point of view;
        • To develop the skills and confidence of the students applying various complementary Magnetic Resonance experiments towards structural elucidation;
        • To highlight modern advances in instrumentation and techniques within NMR and ESR.
      • Optical Spectroscopy (5 ECTS)

        Aims and Objectives:

        • Calculation of rotational energy levels of linear and non-linear molecules and prediction of pure rotational and ro-vibrational spectra.
        • Interpretation of spectra and determination of geometric structures
        • Group theory and vibrational spectroscopy of polyatomic molecules.
        • Electronic absorption spectroscopy: Franck-Condon principle, symmetry of molecular orbitals and of electronic states, selection rules, coupling between vibrational and electronic states
        • Learning of experimental techniques (infrared and Raman spectrometers)
        • Use of computer software dedicated to the calculation of spectroscopic constants and the prediction of spectra.
      • Qantum Chemistry and Chemical Bonding (5 ECTS)

        The aim of the course is to recall the basic concepts of quantum mechanics and to apply them in the field of electronic structure of atoms and molecules.

      • English (5 ECTS)

        • Academic English: how to differentiate between spoken English and formal English, and use the appropriate terms and expressions in a formal essay/letter/thesis
        • Presentation English: how to give good, clear and concise PP Presentation. How to prepare it, express yourself clearly, address your audience, react to questions, etc.
        • CVs and covering letters: how to write a modern, clear, attractive CV well adapted to your goals. How to write a covering letter that will stand out and emphasise your qualities in good, accurate English
        • Lab English: how to describe lab experiments (including materials, equipment, set up, conclusions) with audio exercises providing examples in international context
        • Part of the course is also specifically aimed at students who need to improve their proficiency, with vocabulary and grammar exercises, audio and video documents, and interaction.
    • Liste des UEs optionnelles
      • X-Ray Diffraction (5 ECTS)

        This course focuses on crystallography and diffraction techniques. It is divided into two parts:

        Part 1: theoretical aspects of the X-ray diffraction

        Part 2: technical aspects and processing of powder diffractograms

        The aims of this unit are:

        •             To give a solid background on basic crystallography.

        •             To give a solid background in diffraction techniques.

        •             To highlight modern advances in XRD instrumentation and techniques.

      • Data process. & data analysis in physical chemistry (5 ECTS)

      • Mass Spectrometry (5 ECTS)

          

  • Semestre 2
    • Liste des UEs obligatoires
      • Physical Organic Chemistry (5 ECTS)

        The aims of this unit are:

        • To develop the skills and confidence of the students in organic chemistry through a deep understanding of the underlying physical chemistry phenomena;
        • To identify appropriate methodologies (spectroscopic or other) for the elucidation of reaction mechanisms and reaction intermediate or product structures (including stereochemical aspects).
      • Methodologies in Inorganic Chemstry (5 ECTS)

        The aim of this course is to propose a large overview of preparation methods of inorganic phases, as well as their characterizations through a various set of methods among those mostly used in academic and industrial laboratories.

        Various types of inorganic solids will be covered, including crystalline and vitreous ones, with a focus on porous compounds, which are currently the subject of many developments.

        Phase diagrams are one of the mostly used tools for the elaboration of materials; their use will be described with some comprehensive application examples.

        Characterization methods will be shortly described since the course will focus on their practical use and will be illustrated with examples.

      • Imaging and Chemometrics (5 ECTS)

        In every field of chemistry, data extraction from lab experiments is needed. With computer controlled experimental procedures, chemistry is nowadays an experimental discipline producing an always growing amount of data, up to a point where it is now impossible to analyze spectroscopic data without the appropriate data processing method capable of extracting the wanted information. The proposed course will detail the potential and the limits of different data processing methods in spectroscopy, as an introduction to chemometrics, this new discipline in chemistry. As such, this course will propose to answer to different aspects such as: qualitative, quantitative analyses, imaging problems, and time resolved spectroscopies data exploration. In conclusion, the aim is to obtain a better understanding of the data processing step for spectroscopic data analysis.

      • Advanced Chemical Kinetics and Catalysis (5 ECTS)

        To build upon and extend the theoretical and experimental approaches introduced during the bachelor degree programme.

        To develop the competence and confidence of the students in reaction kinetics and catalysis.

        To identify appropriate experimental procedures for particular application.

        To highlight modern advances in instrumentation and quantitative analytical techniques and their applications.

    • Liste des UEs optionnelles
      • Experimental Methods in Environmental Science (5 ECTS)

      • Spectroscopy for Biology (5 ECTS)

        The objectives of the unit are to enhance the knowledge in the use and utility of spectroscopic methods in the field of biomolecular analysis.

        The course will be divided into three topics dedicated to biomolecular analysis using NMR, SPR and MS. The course will be devoted to the analysis of different classes of biomolecules suitable for these technologies, the strategies to be employed and the type of information (degree of characterization) that they can bring.

        The teaching program will cover fundamental and instrumental aspects will focus on different applications and strategies for biomolecular analysis as well as data interpretation. The theoretical learning will be completed by a practical part.

        The aims of this teaching unit are:

        -Enlarge the basic knowledge on spectroscopy methods as applied to biomolecular analysis.

        -Understand the difference in the divers characterization strategies that can be used and developed for the different classes of biomolecules and identify their specificity.

        -Acquire knowledge on data interpretation for biomolecules

        -Learn integrative strategies to answer biological problems using NMR, SPR and MS.

      • Applied Molecular Spectroscopy (5 ECTS)

        Predict, interpret and use absorption or fluorescence emission spectra of molecules in gaseous and liquid phase in UV-visible region implying electronic transitions

      • Synchrotron Radiation and its applications (5 ECTS)

      • Winter school (3 ECTS)

  • Semestre 3
    • Liste des UEs obligatoires
      • Characterisation of Nanostructured and Disordered Solids (10 ECTS)

        This course is organized in 3 parts, aiming at understanding the fundamentals as well as the applications of several techniques for the characterization of amorphous and nanostructured solids (TEM and associated spectroscopies, SSNMR, XAS).

        It aims at imparting the students the basic knowledge about the solid-state Nuclear Magnetic Resonance (NMR) methods, the concepts of electron microscopy and its related analysis techniques (EDX, EELS) as well as the basic -theoretical and experimental- tools used in X- ray absorption spectroscopy. The final objective of this course is to make the students able to use these techniques in order to characterize amorphous and nano-structured solids (nanomaterials, glasses, catalysts…).

      • Internship and Transferable Skills (10 ECTS)

      • Organic Photochemistry (5 ECTS)

      • Molecular Modelling (5 ECTS)

  • Semestre 4
    • Liste des UEs obligatoires
      • Master Thesis (30 ECTS)

    • Liste des UEs obligatoires
      • Winter school (3 ECTS)

  • Semestre 1
    • Liste des UEs obligatoires
      • Nuclear Magnetic Resonnance (5 ECTS)

        The aims of this unit are:

        • To show the broad impact of magnetic resonance in chemistry, physics, engineering, biology and medicine;
        • To deepen the student’s knowledge of NMR and ESR from a theoretical and instrumental point of view;
        • To develop the skills and confidence of the students applying various complementary Magnetic Resonance experiments towards structural elucidation;
        • To highlight modern advances in instrumentation and techniques within NMR and ESR.
      • Optical Spectroscopy (5 ECTS)

        Aims and Objectives:

        • Calculation of rotational energy levels of linear and non-linear molecules and prediction of pure rotational and ro-vibrational spectra.
        • Interpretation of spectra and determination of geometric structures
        • Group theory and vibrational spectroscopy of polyatomic molecules.
        • Electronic absorption spectroscopy: Franck-Condon principle, symmetry of molecular orbitals and of electronic states, selection rules, coupling between vibrational and electronic states
        • Learning of experimental techniques (infrared and Raman spectrometers)
        • Use of computer software dedicated to the calculation of spectroscopic constants and the prediction of spectra.
      • Qantum Chemistry and Chemical Bonding (5 ECTS)

        The aim of the course is to recall the basic concepts of quantum mechanics and to apply them in the field of electronic structure of atoms and molecules.

      • English (5 ECTS)

        • Academic English: how to differentiate between spoken English and formal English, and use the appropriate terms and expressions in a formal essay/letter/thesis
        • Presentation English: how to give good, clear and concise PP Presentation. How to prepare it, express yourself clearly, address your audience, react to questions, etc.
        • CVs and covering letters: how to write a modern, clear, attractive CV well adapted to your goals. How to write a covering letter that will stand out and emphasise your qualities in good, accurate English
        • Lab English: how to describe lab experiments (including materials, equipment, set up, conclusions) with audio exercises providing examples in international context
        • Part of the course is also specifically aimed at students who need to improve their proficiency, with vocabulary and grammar exercises, audio and video documents, and interaction.
    • Liste des UEs optionnelles
      • X-Ray Diffraction (5 ECTS)

        This course focuses on crystallography and diffraction techniques. It is divided into two parts:

        Part 1: theoretical aspects of the X-ray diffraction

        Part 2: technical aspects and processing of powder diffractograms

        The aims of this unit are:

        •             To give a solid background on basic crystallography.

        •             To give a solid background in diffraction techniques.

        •             To highlight modern advances in XRD instrumentation and techniques.

      • Data process. & data analysis in physical chemistry (5 ECTS)

      • Mass Spectrometry (5 ECTS)

          

  • Semestre 2
    • Liste des UEs obligatoires
      • Physical Organic Chemistry (5 ECTS)

        The aims of this unit are:

        • To develop the skills and confidence of the students in organic chemistry through a deep understanding of the underlying physical chemistry phenomena;
        • To identify appropriate methodologies (spectroscopic or other) for the elucidation of reaction mechanisms and reaction intermediate or product structures (including stereochemical aspects).
      • Methodologies in Inorganic Chemstry (5 ECTS)

        The aim of this course is to propose a large overview of preparation methods of inorganic phases, as well as their characterizations through a various set of methods among those mostly used in academic and industrial laboratories.

        Various types of inorganic solids will be covered, including crystalline and vitreous ones, with a focus on porous compounds, which are currently the subject of many developments.

        Phase diagrams are one of the mostly used tools for the elaboration of materials; their use will be described with some comprehensive application examples.

        Characterization methods will be shortly described since the course will focus on their practical use and will be illustrated with examples.

      • Imaging and Chemometrics (5 ECTS)

        In every field of chemistry, data extraction from lab experiments is needed. With computer controlled experimental procedures, chemistry is nowadays an experimental discipline producing an always growing amount of data, up to a point where it is now impossible to analyze spectroscopic data without the appropriate data processing method capable of extracting the wanted information. The proposed course will detail the potential and the limits of different data processing methods in spectroscopy, as an introduction to chemometrics, this new discipline in chemistry. As such, this course will propose to answer to different aspects such as: qualitative, quantitative analyses, imaging problems, and time resolved spectroscopies data exploration. In conclusion, the aim is to obtain a better understanding of the data processing step for spectroscopic data analysis.

      • Advanced Chemical Kinetics and Catalysis (5 ECTS)

        To build upon and extend the theoretical and experimental approaches introduced during the bachelor degree programme.

        To develop the competence and confidence of the students in reaction kinetics and catalysis.

        To identify appropriate experimental procedures for particular application.

        To highlight modern advances in instrumentation and quantitative analytical techniques and their applications.

    • Liste des UEs optionnelles
      • Experimental Methods in Environmental Science (5 ECTS)

      • Spectroscopy for Biology (5 ECTS)

        The objectives of the unit are to enhance the knowledge in the use and utility of spectroscopic methods in the field of biomolecular analysis.

        The course will be divided into three topics dedicated to biomolecular analysis using NMR, SPR and MS. The course will be devoted to the analysis of different classes of biomolecules suitable for these technologies, the strategies to be employed and the type of information (degree of characterization) that they can bring.

        The teaching program will cover fundamental and instrumental aspects will focus on different applications and strategies for biomolecular analysis as well as data interpretation. The theoretical learning will be completed by a practical part.

        The aims of this teaching unit are:

        -Enlarge the basic knowledge on spectroscopy methods as applied to biomolecular analysis.

        -Understand the difference in the divers characterization strategies that can be used and developed for the different classes of biomolecules and identify their specificity.

        -Acquire knowledge on data interpretation for biomolecules

        -Learn integrative strategies to answer biological problems using NMR, SPR and MS.

      • Applied Molecular Spectroscopy (5 ECTS)

        Predict, interpret and use absorption or fluorescence emission spectra of molecules in gaseous and liquid phase in UV-visible region implying electronic transitions

      • Synchrotron Radiation and its applications (5 ECTS)

      • Winter school (3 ECTS)

  • Semestre 3
    • Liste des UEs obligatoires
      • AE4- Advanced Spectroscopic Techniques for Environmental Ana (5 ECTS)

        • Ability to derive significant quantitative parameters from spectroscopic analysis;
        • Ability to assess and address a complex environmental sample analysis based on spectroscopic solutions;
        • Critical evaluation of a given technique advantages and drawbacks - ability to propose new developments/variants;
        • Design, document, and conduct an optimized experimental procedure, including spectroscopic data acquisition.
      • AE5- Observing Systems for Atmospheric Composition (5 ECTS)

      • Languages (5 ECTS)

      • AE1-CHEM Advanced analysis methods of atmospheric species (5 ECTS)

        A l'issue de l'enseignement, l'étudiant devra être capable de proposer et d'utiliser des techniques avancées (spectroscopiques ou spécifiques) pour détecter, caractériser et mesurer des espèces chimiques en phase gazeuse ou solide à l'état de traces et qui peuvent être impliquées dans des problématiques environnementales.

      • AE3 - Physics and Chemistry of the Atmosphere (5 ECTS)

        A l’issue de l’enseignement, l’étudiant est capable de :

        • d’expliquer la structure de l’atmosphère et les mouvements qui s’y produisent
        • décrire les processus chimiques et photochimiques impliquant les principaux polluants gazeux (ozone, NOx, COV)
        • décrire les interactions entre l'atmosphère et le rayonnement en vue d'établir un bilan radiatif terrestre
        • calculer un de transfert de masse de la phase gazeuse vers la phase condensée
        • calculer un bilan radiatif
        • prédire le devenir atmosphérique des espèces émises en fonction de la nature de leur source
        • maîtriser la métrologie de l'aérosol par mesure de comptage et de granulométrie
      • AE2 CHEM- Reactivity in homogeneous and heterogeneous phases (5 ECTS)

        • Acquérir les connaissances fondamentales et les savoir-faire associés à la cinétique chimique, la chimie de la combustion et la catalyse hétérogène;
        • Appliquer ces connaissances à des problèmes relevant de problématiques environnementales.
  • Semestre 4
    • Liste des UEs obligatoires
      • Stage de recherche (30 ECTS)

        Le stage de M2 s'effectue dans un centre de recherche académique ou privé et constitue une initiation à la recherche en lien avec les sciences de l'atmosphère et mettant en oeuvre les connaissances théoriques et expérimentales acquises par l'étudiant au cours des semestres précédents.


Prérequis

Pre-requisite : Master 1 in Physical Chemistry.

  Students interested in the "Advanced Spectroscopy in Chemistry" speciality should be aware that this course offers 2 different pathways:

1. A national master's degree offered within the usual frame of studies in Lille1, admission after completing the first year of the PAC Master.

2. A European Joint Master's Degree with a mandatory mobility wihin the ASC network (Lille1, Krakow, Bologna, Leipzig, Helsinki) leading to the award of double (or multiple) diploma. Students interested in this specific programme are selected at the entrance of the first year of master PAC. For full details, refer to the ASC Master website or contact Prof. Sylvain Cristol

Admission

Completion of the first year of Master PAC (60 ECTS minimum), or equivalent.

Admission

Pour les étudiants titulaires d'un diplôme français :

  • être titulaire d'une 1ère année de master validée dans le domaine de la chimie ou de la chimie-physique
  • déposer un dossier d'admission avant le 15 mars : candidature.PDF - candiature.DOC

Pour les étudiants titulaires d'un diplôme étranger :

Accès et tarifs en formation continue

Pour tout renseignement concernant l’information et l’orientation du public en reprise d’études après un arrêt de 2 ans ou plus, la Validation des Acquis et de l'Expérience (VAE) et la Validation des Acquis Professionnels (VAP) et les tarifs appliqués, contacter le Service Formation Continue : Tél. 03 20 43 45 23

Droits de scolarité en formation initiale

Pour l'année universitaire 2017-2018, les droits de scolarité en formation initiale s'échelonnent selon les diplômes préparés : 184 € (années d'études conduisant à la Licence, au DUT, au DEUST) ; 256 € (années d'études conduisant au Master) ; 391 € (cursus doctorat et HDR) et 610 € (Diplôme d'ingénieur). A cela s'ajoutent 217€ de cotisation pour la Sécurité Sociale et 5,10 € de droits universitaires.


Poursuite d'études et insertion professionnelle

  • cadres supérieurs, experts internationaux, dans les domaines: analyse chimique, caractérisation structurale, matériaux, caractérisation des réactions rapides, surveillance et maintenance de la qualité
  • poursuite d'études en doctorat

 

Poursuite d'études et insertion professionnelle

Poursuite en thèse de doctorat dans un laboratoire de recherche en France ou à l'étranger.

Ingénieur recherche/chargé de mission en environnement dans le secteur privé (R&D) ou public (association de suivi de la qualité de l’air par exemple).

 


Composantes

Personnes à contacter

Première année

Responsable
sylvain.cristol@univ-lille1.fr

Première année

Responsable
sylvain.cristol@univ-lille1.fr

Deuxième année

Responsable
sylvain.cristol@univ-lille1.fr
Secrétariat
Master-ASC@univ-lille1.fr

Deuxième année

Responsable
denis.petitprez@univ-lille1.fr
Secrétariat
03 20 33 62 34
jeremy.leclercq@univ-lille1.fr